| Item # Co | Sector | Emissions Category | Measure Name | Measure Description | Metrics for Tracking Progress | GHG Emission Reductions 2030 | GHG Emission Reductions 2050 | nnlementation Cost (\$-\$\$\$\$) | Cost Information | Overall Benefits and disbenefits | I IDAC benefits and dishenefits | Place Types | No/Low-Regret | Time Frame | Implementing Authorities | Has Authority to Implement? | Implementation schedule and | Funding Opportunities (Grants, funding | Funding Aiready Secured? | Occupations to Implement | |-------------|----------------|---------------------------------------|--|---|---|--|--|----------------------------------|--|--|--|--|---------------|---------------------------------|--|--|--|--|---|--| | 3 C1-1 | 3. Electricity | Decarbonize Purchased
Electricity | Community enrollment in renewable energy government aggregation/community choice aggregation | Communities enroll in a government/community choice
aggregation contract through SOPEC or NOPEC to purchase
100% renewable energy for residential and small business | | 100% of residential electricity emissions, minus
municipal utility residential customers. | 100% of residential electricity emissions,
minus municipal utility residential
customers | \$ | Negligible cost increase to rate-
payer as of 2025; no cost to
community. | Straightforward; - Accelerates
electrification; - Signals market to
build more renewable energy; | Straightforward; - Accelerates
electrification; - Signals market to
build more renewable energy; | All | Low-Regret | 2025-2030 | Municipalities, local elected official | Is Yes - CCA permitted in Ohio | Signed up by 2030 | Not needed - CCA does not require a
downpayment. | N/A | Sustainability Analyst (City/Village); | | 3 C1-2 | 3. Electricity | Decarbonize Purchased | Opt-in Public Pricing Program , including local govts, political subdivisions, non-profit and faith- | electricity customers in their geography For public-sector mercantile customers, including local govts, non-profit and faith-based orgs in a SOPEC community, or statewide | tracked at community and County level: | 20% of electricity emissions from eligible entitites | 100% of electricity emissions from eligible | \$ | S. Negligible cost increase to participating organization. | (DisBen) - None - Straightforward; - Accelerates
electrification; - Signals market to
build more renewable energy; | (DisBen) - None
- Straightforward; - Accelerates
electrification; - Signals market to
build more renewable energy; | All | Low-Regret | 2025-2030, 2030-2040 | Public sector mercantile customers
including local governments,
political subdivisions and faith- | s.
Yes - permitted in Ohio | 20% by 2030; 100% by 2050 | Not-needed - Opt-in requires only that the entity
located within a SOPEC member. Any Ohio | s
N/A | Sustainability Analyst or Energy
Manager (Organization); | | | 0.50.4676 | Decarbonize Purchased | based orgs (SOPEC) Physical Purchase Power Agreements (PPAs) | Non-CCA eligible entitites - Larger mercantile, commercial and | 20% by 2030, 100% by 2050 % of entitites enrolled county-wide, | 20% of commercial and industrial electricity from | 100% of commercial and industrial | | \$. Low cost increase to participating | (DisBen) - None | (DisBen) - None | All | | 2025-2030, 2030-2040 | based organizations | d Yes - individual entities can enter | 20% by 2030: 100% by 2050 | political subdivision can join. The terms of a PPA may be improved, depending on the incentives the out-of-state project qualifier. | 1 | Sustainability Analyst or Energy | | 3 (1.3 | 3. Electricity | Electricity | Physical Purchase Power Agreements (PPAs) | generated out-oi-region | tracked at Community & County level | renewable or net-zero sources | electricity from renewable or net-zero sources | • | organization | Usually long-term offtake | None | All | | 2025-2030, 2030-2040 | industrial | PPAs Yes - Municipal utilities can make | 20% by 2030; 100% by 2050 | for; most renewable projects continue to qualify
for ITC and PTC federal tax credits.
Self-pay; Public Utilities Commission of Ohio | NA | Manager (Organization); Traditional utility workers, electrical | | 3 C2-1 | 3. Electricity | Grid Modernization | Intelligent grid management systems | Modernize distribution system management to improve Demand
Response, peak management, engagement of grid-scale storage
for Frequency Regulation and Voltage control | % of distribution grid upgrades across
community; % of smart meters installed
in the communityz | 2% electricity sector emissions reductions by 2030 | 9% Electricity Sector Emissions
Reductions by 2050 | ss | expenditure; based primarily upon
the twin pillars of cost-effective
operation and improved reliability | agreements; more complex
necessary for the development of
complex grid management, demand
response, energy efficiency
systems, and high EV/PHEV
adoption | - Improves power quality in LIDAC neighborhoods | All | | 2025-2030, 2030-2040, 2040-2050 | Municipal Utilities, Investor-owned utilities | grid investments; local governments
can work with IOUs to support
implementation | s 20% by 2030; 100% by 2050 | (PUCO) is managing a grid reslience formlua
grant:
https://puco.ohio.gov/utilities/electricity/resource
ohio-grid-resilience-formula-grant-program-faq | No | engineers, network engineers,
cybersecurity analysts, and policy
experts | | 3 C2-2 | 3. Electricity | Grid
Modernization | Grid-scale power systems modernization | Reduce line losses through equipment modernization across the distribution grid | Number of communities with 100%
substation and power systems
equipment modernized. | 1% electricity sector emissions reductions by 2030 | Up to 4% electricity emissions savings
across the system. Higher in rural areas,
and during peak.
https://www.4cleanair.org/wp-
content/uploads/Documents/Chapter_10_p | sss | \$\$\$ Capital Investment; ROI within
2.5 years per:
https://www.4cleanair.org/wp-
content/uploads/Documents/Chapte
r_10.pdf | necessary to support high-
electrification and high EV/PHEV | - Improves power quality in LIDAC neighborhoods | All | | 2025-2030, 2030-2040, 2040-2050 | Municipal Utilities, Investor-owned utilities | Yes - Municipal utilities can make
grid investments; local governments
can work with IOUs to support
implementation | s 25% by 2030; 100% by 2050 | Self-pay | No | Traditional electric utility workers;
electrical engineers; network
engineers; electricians | | 3 C2-3 | 3. Electricity | Grid Modernization | Community-serving microgrid and minigrid systems | Microgrid and mini-grid systems provide resilience for critical
s. community infrastructure; average size 5 MW renewable energy +
20 MWh storage | (2) 5 MW Microgrid by 2030; (50) 5 MW equivalent by 2050 | See calculations Columns M-Q; 8,869 MTCO2e avoided by 2030 | 1,475,211 MTCO2e avoided by 2050 | ss | \$\$ capital investment for
communities; ROI depends on size
of microgrid (wires, cables capital
intensive) presence of energy
storage. | community members; increases
resiliency of emergency services;
strong ROI for communities. Modes | Same | Ali | | 2030-2040, 2025-2030 | Municipal Utilities; campus or large
farm operators | Yes - municipal utilities can
implement these projects in
partnership with local governments
and other stakeholders | 2 Microgrids by 2030, 22 by 2040
50 by 2050 | OH Dept of Development has a program that can
support microgrid development for grid restiency
up to \$500K | Yes - Cuyahoga Green Energy (CGE) secured
\$1.8 million from U.S. DOE to launch three
microgrid projects in region | Solar panel installers, Traditional
electric utility workers; electrical
engineers; network engineers;
electricians | | 3 C3-1 | 3. Electricity | Energy Efficiency - non-
buildings | Convert lighting to energy efficient light-emitting diode (LED) light bulbs | Finish transition to LED for street, security and outdoor ambient lighting | % of communities to report 100% transition | Estimate 1% electricity sector emissions reductions by 2030 | y Estimate 2% electricity sector emissions reductions | \$ | \$ Capital Investment; high ROI. | emissions reductions Improves safety, Reduces maintenance requirements | - Better lighting in urban LIDAC neighborhoods improves safety | All | Low-Regret | 2025-2030, 2030-2040, 2040-2050 | Municipalities, political subdivision
park districts | Yes - local governments can
implement in partnership with
municipal utilities/IOUs | 50% by 2030, Complete by 2040 | | Yes - funding available from NOPEC and SOPEC
for CCA communities, from IOUs for other
communities | C Traditional electric utility workers | | 3 C4-1 | 3. Electricity | Renewable Energy
Generation | Utility-scaled solar (in-region) | Construction of MW-scale utility solar in region in support of municipal utilities. Could also address PPA with in-region supply | Number of 10MW installations | Average of 10 MW put in servicelyr with 50 MW by en of 2030. for 88,690 cumulative MTCO2e avoided | Average 20MW put in service/yr from 2030-
d 2050. By 2050, 266,070 MTCO2e avoided
annually, with 3,163,279 MTCO2e avoided
in total | ss | \$\$ Capital Investment; ROI 7-10 years | Reduces cost of electricity over
time; Mitigates risk of contract cost
increases. | - In-MSA impact improves air quality; provides in-MSA jobs | Ali | | 2025-2030, 2030-2040, 2040-2050 | Municipal Utilities, Investor-owned
utilities; or Larger mercantile,
commercial and industrial through
in-region PPA | Yes - utilities can implement, local
governments can support via PPAs | 50 MW by 2030, 450 MW by 205 | Developers for Solar RECS of up to \$9 per MWh | Yes - funding available from CPRG, ITC/PTC available for installers | Solar panel installers, Traditional
electric utility workers; electrical
engineers; network engineers;
electricians | | 3 C4-
10 | 3. Electricity | Renewable Energy
Generation | Offshore wind | Utility scale off shore wind in Lake Erie; using Capacity Factor 41%, per RENA 2023 | Construction announced for Pilot
project; construction started for pilot
project; system operational. Succesful 2
years of operation; construction
announced for larger scale system. | NA | Adding 50 MW in 2035, 100 MW in 2040 and 100 MW 2045, results in 331,325 MTCO2e avoided annually by 2050, and 1,987,950 MTCO2e cumulative avoided emissions by 2050. | \$\$\$ | \$\$\$ Capital Investment; High Initial infrastructure investment, but subsequent savings on each additional turbine/project in-region | B: High Job Creation Potential | LIDAC communities may be more
dependent on emissions reductions
within the grid to decarbonize, rather
than community or rooftop solar. | Legacy City | | 2040-2050 | Clean-energy developer; Municipal
Utilities, Investor-owned utilities; o
Larger mercantile, commercial and
industrial through in-region PPA | Maybe - Icebreaker project received approval from Ohio Power Siting Board in 2020 but has been on hold | Adding 50 MW in 2035, 100 MW 2040 and 100 MW 2045 | current orcoram ends in 2028. renewable electricity production tax credit (PTC) is a per kilowati-hour (kWh) lederal tax credit in included under Section 45; wind equipment eligible for 10 years after entering service. https://www.epa.gov/lmop/renewable-electricity- | No | boat operators, wind turbine
maintenance technicians, power
plant operators, electric utility
workers, crane operators,
longshoremen | | 3 C4-2 | 3. Electricity | Renewable Energy
Generation | Repurpose brownfields into clean energy hubs | 75% of the 1107 brownfield acres in the MSA converted to solar, or 830 acres. At 4.25 acres/MW, potential for 195 MW | % brownfield acres converted, per | Average of 7 MW put in service/yr with 35 MW by the end of 2030, for 62,083 cumulative MTCO2e avoided | Average 8 MW/yr put in servicelyr from
2030-2050. By 2050, 115,297 MTCO2e
avoided annually, with 1,489,299 MTCO2e
avoided total | ss | \$\$ Capital Investment; ROI 6-9 years | benefits), reduces cost of electricity | - Improves land use for under-
utilized or degraded sites (tax
benefits), reduces cost of electricity
over time, mitigates risk of contract
cost increases | Legacy City, Established City &
Town, Rural Community | | 2025-2030, 2030-2040 | utilities; or Larger mercantile, | Yes - municipal utilities and IOUs
can implement in partnership with
local governments (e.g. Brooklyn
Landfill solar project) | 35 MW by 2030, 195 MW by 205 | Depending on how the project is structured, the Federal Solar Investment Tax Credit of 30% applies; "energy community" designation can earn additional 10%; low-income communities qualify for additional 10%. https://lml.org/time.communities-to-embrace-clean-energy-on- | Yes - Cuyahoga County, City of Painesville, and City of Cleveland secured \$129 million CPRG implementation grant for solar and battery storag on brownfields | electric utility workers: electrical | | | | Renewable Energy | | Adding an average standard 200 sq ft / 3.45 kw array to a single- | 50kw installed per year, per 1000 single family residences in cities/1st ring | Avenue of 40 C LBW and in carrier (up 440 397 | 9,541,295 cumulative MTCO2e avoided. | | solar cost-benefit; \$\$ Capital | Reduces the demand on the grid,
especially during summer peak;
pays for itself in a few years, then
saves homeowners money. When
paired with household electrification | - Adds to home value; typically installed on a new roof, so a | | | | | Yes - property owners can | 248 MW by 2030; 1.241 GW by | (1) Federal Solar Investment Tax Credit - up to
30% through 2032. (2) For Ohio homeowners, | Yes - City of Cleveland and Cuyahoga County ar
part of Industrial Heartland Solar Coalition (IHSC)
which secured \$156 million Solar For All grant | 0). | | 3 C4-3 | 3. Electricity | Generation Energy | Residential rooftop solar | family house. (Behind the meter solutions) | suburbs; 100kw installed / per year / per
1000 stand-alone houses in outer ring,
rural communities | Average of 49.6 MW put in service / yr; 440,367 cumulative MTCO2e avoided | https://docs.google.com/document/d/18Rte
PIRXvdlns?HuGC3RmpoRCwsobyTsaK10
buGam0!edit?usp=sharing | ss | Investment for homeowners | and smart home management, can
save even more money. Disbenefit
no incentive for landlords to install
for renters; insurance costs go up;
not suitable for every roof. | Once paid for saves homeowners | All | Low-Regret | 2025-2030, 2030-2040, 2040-2050 | Associations | implement, and local governments
can support | 2050 | interest rate reduction of up to 3% on loans up to
\$SOK for energy efficiency and renewable energi
improvements on homes. (1) Solar systems that are placed in service in | | traditional utility workers | | 3 C4-4 | 3. Electricity | Renewable Energy
Generation | Commercial-scale rooflop & parking lot solar | Adding an average standard 1000 sq R / 17 25 kw array to a commercial building or school. (Behind the meter commercial solutions) | 150kw installed / per year / per 300 stand-dince businesseel schools / mercantile establishments. | Average of 16.7 MW put in servicelyr; 148.400 MTCo22 cumulative avoided | 3.215.347 cumulation MTCO2 e
socioded.
le littles (More google com/documentel/11 fflib.
PIRCNetino THACCI-StempoRC assisty T ank 10
IASCAmORed Traps rehating | SS | solar cost-benefit; \$\$ Capital Investment for businesses/schools | Reduces the demand on the grid, especially during summer peak; pays for itself in a few years, then saves business owners, schools money. When pailed with electification and smart building management systems, can save to incentifie for inardiors to install for renting businesses; insurance costs go up; not suitable for every roof. | Once paid for, saves businesses, school districts money. | All | Low-Regret | 2025-2030, 2030-2040, 2040-2050 | Building owners, school management. | Yes - property owners can implement, and local governments can support | 83.6 MW by 2030; 418 MW by 2050. | 2002 or later and begin construction before 2020 are aligned for a 50%. Feederal (Tio 2 or 2.25% are eligible for a 50%. Feederal (Tio 2 or 2.25% at 100% FTC if they meet labor requirements based by the LST lensuary, or are under 1 MW. 2020 for 100% 1 | | solar panel installers, efectificians, traditional utility workers | | 3 C4-5 | 3. Electricity | Renewable Energy
Generation | District thermal energy systems | District thermal energy systems will primarily be geothermal
systems where sufficient land and geology permit; may also be
waste water or industrial or data center cooling water in very | 1 System by 2030; 12 systems by 2050 | Per site, 100% reduction NG combusion per site.
Assuming an average "district" uses 3,000,000
MMBTU/y is 159,300 MTCO2e avoided in 2030. | 1 new system added every second year.
23,257,800 cumulative MTCO2e avoided -
see calculations tab | sss | https://docs.nrel.gov/docs/fy23osti/8 | Improved air quality; reduction of
critical air pollutants from burning | Improved air quality; reduction of
critical air pollutants from burning
NG | All | | 2025-2030, 2030-2040, 2040-2050 | Campuses, District energy operators | Yes - property owners can
implement, and local governments
can support | Not counting Oberlin system, 1 n
by 2030, 12 new systems by 205 | (1) Property-Assessed Clean Energy (PACE) Financing (in PACE-eligibile communities); (2) Green-Bonds for bond-financing; (3) Tax-exempt municipal bonds, Also an opportunity for public- | No | Power plant operators, maintenance
technicians, electricians, pipefitters,
HVAC technicians, well-drillers | | 3 C4-6 | 3. Electricity | Renewable Energy
Generation | District or utility-scale battery storage - Long duration (>10 hrs) | dense areas Long duration energy storage (>10 hours) at district-scale or utility scale implementation, due to complexity of operation | (1) 200MW / 2000 MWh system by 2045 | | 438,379 cumulative MTCO2e avoided. | ss | 6678.pdf | Improved air quality, avoids engaging most polluting electricity | Improved air quality, avoids | Legacy City | | 2040-2050 | Most likely a large municipal utility
CPP or Cuyahoga Green Energy. | Yes - municipal utilities and IOUs can implement in partnership with local governments | 1 system by 2045 | private financing, esp. if the "district" includes industry. (1) Property-Assessed Clean Energy (PACE) Financing (in PACE-eligible communities); (2) Green-Gonds for bond-financing, (3) Taxesempt municipal bonds. Finances for projects can be supported by maximizing taffif-eligible use cases approved by the PUCO, such as Demand Response programs, Frequency Regulation, and | No | Traditional electric utility workers; electrical engineers; network engineers; electricalars | | 3 C4-7 | 3. Electricity | Renewable Energy
Generation | Hydrogen as an energy carrier | (Low-carbon) Hydrogen as a solution for energy storage, transportation, and industrial processes. | 1 production facility by 2040 making
SOMT/day, second by 2045 producing
100MT/day; Construction announced by
2035; begun by 2037, complete by
2039. | NA | 5,157,762 MTCO2e cumulative emissions avoided | SSS | \$\$\$.\$850M to \$1B to build a new green H2 production facility producing 100 MT per day. https://www.cascadiadaily.com/202 4/juni02/altaqas-hydrogen-plant-proposal-facing-two-important-checkpoints/ | have significant air quality benefits,
particularly for communities
adjacent to highways and factories.
Reduction in most critical air
pollutants, to include PM10 and 2.5
SOX and NOX. Disbenefit - cost | to industry or highways, and may
disproportionately benefit from
industry and heavy transportation | Legacy City, Established City &
Town, First Ring Suburb | | 2030-2040, 2040-2050 | Factory owners / operators. Heavy
lift transportation operators. Ohio
Dept of Transportation, Turnpike
Authority | | 1 production facility by 2040;
second by 2045; Construction
announced by 2035; begun by 20
complete by 2039. | Voltace regulation. A hydrogen production facility would qualify for Jobs Othio incentives, based on construction employment and full-time hires. (2) Green Bond: | Yes - State of Chio is part of Appalachian
Regional Clean Hydrogen Hub (ARCH2) | For H2 production: factory operators, electrolyzer technicians, maintenance technicians, pipefitters. For H2 operations, qualify engineers, safety engineers, tutuck drivers, bueling station operators, fueling station construction. | | 3 C4-8 | 3. Electricity | Renewable Energy
Generation | New Nuclear at Perry | Add an additional 2 GW of zero-emissions nuclear power at Perry.
May be existing or new technology | 1 new reactor online by 2046, second online by 2047. Construction announced by 2035; construction commenced by 2038; construction complete by 2044 | NA NA | In adding 1 GW to Perry in 2046 and a 2nd
GW of new nuclear to Perry by 2047,
results in 5,980,014 MTCO2e avoided
annually, with 26,910,063 MTCO2e
cumulative emissions avoided by 2050. | ssss | \$\$\$\$ Capital Investment; \$\$
Operational Investment; Long-term
ROI; LCOE \$88/MWh (2022 EIA
estimate) | from 2025-2035. Provides abundant baseload electricity generation to support gric scale electrification. | LIDAC communities may be more
dependent on emissions reductions
within the grid to decarbonize, rather
than community or rooftop solar. | Outer Ring Suburb | | 2040-2050 | Vistra (current Perry owner),
Investor owned utility, or new
nuclear power developer (like
Elementi Power) | Maybe - capacity exists at site, but
building new reactor would require
federal approval | 1 new reactor online by 2046,
second online by 2047.
Construction announced by 2035
construction commenced by 2031
construction complete by 2044 | JobsOhio incentives. (4) Green Bonds offer | No | Nuclear certified power plant
operators, security guards, electric
utility workers | | 3 C4-9 | 3. Electricity | Renewable Energy
Generation | Geothermal electricity generation | Geothermal electricity generation using new drilling and heat-
exchange technology to generate electricity, e.g.
https://ervoenergy.com/about/; using capacity factor 82%, per
RENA 2025 | Construction announced by 2035;
construction commenced by 2038;
construction complete by 2044 | NA NA | In adding 300 MW in 2046, results in
795,180 MTCO2e avoided annually, with
3,975,901 MTCO2e cumulative emissions
avoided. | SSS | Speculative: \$\$\$ Capital Investment | Provides abundant baseload
electricity generation to support gric
scale electrification. | LIDAC communities may be more
dependent on emissions reductions
within the grid to decarbonize, rather
than community or rooftop solar. | Legacy City, Rural Community | | 2040-2050 | Investor owned utility, or geotherm:
electrical company like Fervo | al Yes - projects would require regulatory approval | Construction announced by 2035
construction commenced by 2031
construction complete by 2044 | attractive financing, renewable electricity production tax credit (PTC) is a per kilowatt-hour (kWh) federal tax credit included under Section 45; geothermal electricit equipment eligible for 10 years after entering service. | | | | | | | T | | T | | | | I | 1 | | | | | | | | T | | Advanced metering technicians. | |--------|---------------------------------|---|---|--|---
---|--|--------|--|--|---|--|------------|---------------------------------|---|---|---|--|---|---| | 4 C4-1 | Commercial & Residential Energy | Grid-Interactive Building
Demand Flexibility | s & Automated Building Systems and Smart Devices | | Total percentage of buildings with at
least one grid-interactive system (e.g.,
smart thermostat, responsive HVAC,
etc.). | Launch GEB pilot programs; install smart meters in 20% of homes | Peak loads shifted through automation in 70% of homes | \$ | Approximately \$6 million (high ROI by 2030 and \$157.5 million (high ROI) by 2050 | | Low energy bills, improved comfort
and health of occupants, equitable
access, local job creation, improved
grid reliability | Ali | No-Regret | 2030-2040, 2040-2050 | Local electric Utilities, Public Utility
Commission of Ohio, Regional
Planning bodies, State Energy
Office | Yes - municipal utilities could
implement, but IOUs would require
approval from PUCO | Beginning in 2026, a 20% reduction 2030, and a 70% in 2050 | 179D Energy Efficient Commercial Buildings Ta:
Deduction
GGRF | Yes - OAQDA is part of Coalition for Green
Capital's GGRF coalition, so funds are available
for Ohio property owners | energy program managers,
Electricians, Energy Management
program Analyists, community
related jobs (outreach coordinators,
energy planners), architects, and | | 4 C4-2 | Commercial & Residential Energy | Grid-Interactive Building
Demand Flexibility | s & Active Energy Adjustment for Grid Support (Demand
Response) | This topic focuses on how a building interacts with the larger electrical gid. It's about the building actively changing its energy concurring on when acted to do any the utility company or in response to signals from the grid. | Percentage of new buildings enrolled in the program | n 30% of new homes and commercial buildings | 85% of new homes and commercial buildings | sss | Approximately \$15-\$25 million in savings (reduction of 8K-13K TCO2e & high ROI) by 2030 and \$130-\$180 million in savings (reduction of 80K-105K TCO2e & high ROI) by 2030 | Lower energy bill, peak cost
avoidance for the utilities, CO2
reduction, and reduced blackouts
and outages, create local jobs | Lower energy burden for vulnerable
households, reduce blackouts in
disadvantaged areas, and explore
potential opportunities for local job
creation in smart technology
equipment and systems
installations, as well as energy
reduction programs administration
and management. | Ali | | 2030-2040, 2040-2050 | Local electric Utilities, Public Utility
Commission of Ohio, Regional
Planning bodies, State Energy
Office | Yes - municipal utilities could implement, but IOUs would require approval from PUCO | Beginning in 2028, a 30% reduction in 2030, and a 85% in 2050 | Demand Response programs where utilities/PJI
currently pay enrolled commercial or industrial
currently pay enrolled commercial or industrial
during high use events could provide a
mechanism to finance these building
improvements. Additional funding sources
beyond private financing are not available. | A No | building inspectors. Advanced metering technicians, energy program managers, Electricians, Energy Management program Manajdysts, community related jobs (outreach coordinators, energy planners), architects, and building inspectors. | | 5 C1-1 | 5. Industrial Energy | Energy Efficiency | Energy audits | Conduct energy audits at all facilities | 20% energy consumption reduction across industry by 2030; creation of
facility decarbonization plans | audits themselves actually don't do anything - but if solutions are adopted there are reductions, this should lead to - 20% energy consumption reduction. These emissions reductions are reflected in the other energy efficiency solutions, they are just identified here | 40% energy consumption reduction. These | \$ | Audits themselves are free for sma
- medium industries | I reduces demand on grid | Improved grid quality due to the reduction of demand from industrial facilities | All | No-Regret | 2025-2030 | specific industry; industry standards
board; ohio manufacturing
association; incentive system at the
city or county level | Yes - Individual property owners can
undergo energy audits, and
municipal utilities could support via
programs/incentives, but IOUs
would require approval from PUCO | audits done ASAP; sustainability
plans created for each industrial
facility by 2030 outlining their
specific path to net-zero | Free industrial energy assessments using the
industrial Assessment Centers (RC), historical
DOE funding for energy efficiency projects, Ohio
Department of Development State Program funded implementation of energy
Program funded implementation of energy
efficiency projects for manufactures with the
Ohio Energy Efficiency Program (OEEP) —
implementation funds for energy efficiency
refedits, bank financing
Federal Tax Credits in §48C for industrial | No, but OAQDA provides funding for industrial energy efficiency projects | energy auditor; mechanical
engineers; electrical engineer;
building systems specialists; data
analyst; energy modeler | | 5 C1-2 | 5. Industrial Energy | energy efficiency | Waste heat recovery and utilization systems | determine whether a waste heat recovery and utilization system would be benefitial in a facility. incorporate it into building heating, energy generation, or preheating industrial processes | , 20% of waste heat recovered | reduce total industrial energy demand by 9% | 10% energy demand reduction | \$\$\$ | \$100,000 - \$10 M depending on
size and application. Typically
payback in under 10 years | reduces demand on grid | improved grid quality due to reduction of demand from industrial facilities | Ali | | 2025-2030, 2030-2040 | specific industry; industry standards
board; ohio manufacturing
association; incentive system at the
city or county level | Yes - businesses can implement, and local governments can support | installed by 2030 | Federal Tax Credits in §48C for Industrial
Decarbonization; Ohio Department of
Development State Energy Program funded
implementation of energy efficiency projects for
manufacturers with the Ohio Energy Efficiency
Program (OEEP) – implementation funds for
energy efficiency restoffits, bank financing | No, but OAQDA provides funding for industrial
energy efficiency projects | thermal systems engineer;
mechanical engineer; project
manager; industrial maintenance
technician; energy modleler | | 5 C1-3 | 5. Industrial Energy | Energy Efficiency | Monitoring Systems | Installing energy monitoring systems in industrial buildings or
along key processes give real-time updates of energy usage and
identify energy waste and process inefficiencies, leading to energy
savings of 5-10%. Digital monitoring equipment gives real-time
updates on energy consumption and can give insights into where
settings could be optimized. This allows for better energy
management, consistency in operations, and reduced energy or | IV 100% energy monitoring by 2050 for all industrial processes | II monitoring systems themselves do not reduce
emissions but identify issues earlier | monitoring systems themselves do not reduce emissions but identify issues earlier | s | \$10,000 - 500,000 depending on
sizea and application. payback in <
years | 5 reduces demand on grid | improved grid quality due to
reduction of demand from industrial
facilities | All | Low-Regret | 2025-2030 | specific industry; industry standards
board; ohio manufacturing
association; incentive system at the
city or county level | Yes - businesses can implement, and local governments can support | installed by 2030 | Ohio Department of Development State Energy
Program funded implementation of energy
efficiency projects for manufacturers with the
Ohio Energy Efficiency Program (OEEP) –
Implementation funds for energy efficiency
re | No, but OAQDA provides funding for industrial
energy efficiency projects | Controls engineer; instrumentation technician; software developer; facilities engineer | | 5 C1-4 | 5. Industrial Energy | Energy Efficiency | Energy Efficient Equipment | Energy efficient equipment depends on the industry subsector and are discussed in more detail in the appendix, but on average, energy efficient motors, purps, variable drive motors, high-efficiency coolers and furnaces and other high-efficiency equipment can reduce energy consumption by 10-20%. | d establish an end of life switch to highes effiency models | st reduced electricity emissions by 20% | reduces electricity emissions by 40% | ss | \$5,000 - \$50,000 depending on specific application; payback in ~ 5 years | reduces demand on grid | improved grid quality due to
reduction of demand from industrial
facilities | Ali | Low-Regret | 2025-2030 | specific industry; industry standards
board; ohio manufacturing
association; incentive system at the
city or county level | Yes - businesses can implement, and local governments can support | installed by 2030 | Ohio Department of Development State Energy
Program funded implementation of energy
efficiency projects for manufacturers with the
Ohio Energy Efficiency Program (OEEP) –
Implementation funds for energy efficiency
retrofits: Sank financino: | No, but OAQDA provides funding for industrial
energy efficiency projects | electrical engineer; hvac specialist;
procurement officer; maintenance
technician | | 5 C1-5 | 5. Industrial Energy | Energy Efficiency | Automation | Installing automatic shutoffs for when equipment isn't in use
reduces the emissions from idle opwer consumption and can
reduce electricity consumption by 5-10%. Using smart scheduling
to schedule onlot filmes for areas of the hospital or other facilities
that operate constantly, that don't need to be operating
continuously (e.g. operating rooms) reduce energy consumption
by turning off HVAC, lighting, and non-critical equipment during
low-demand times. This can asse us to 10% sower consumption. | automation by 2050 | or 10% energy savings | 10% energy savings | \$ | <\$1000 per sensor | reduces demand on grid | improved grid quality due to
reduction of demand from industrial
facilities | Ali | | 2025-2030 | association; incentive system at the
city or county level | Yes - businesses can implement, and local governments can support | installed by 2030 | Ohio Department of Development State Energy
Program funded implementation of energy
efficiency projects for manufacturers with the
Ohio Energy Efficiency Program (OEEP) — | No, but OAQDA provides funding for industrial energy efficiency projects | automation engineer; controls
engineer; industrial electrician;
software developer; energy
manager | | 5 C2-1 | 5. Industrial Energy | Process & Material
Efficiency | Reduce industrial waste | Looks different for specific industries, but, developing processes
that create less waste and finding opportunities to recycle
materials within a process to reduce waste. | waste reduction of 30% by 2030 and
zero waste by 2050 | n/a | n/a | SSS | Extremely variable depending on the
actual application but process
audits alone cost ~\$50,000 | e reduces other pollutants beyond
emissions reducing the amount of
industrial pollution put into water
sources | improved air quality | All | No-Regret | 2025-2030, 2030-2040, 2040-2050 | specific industry; industry standards
board; ohio manufacturing
association; incentive system at the
city or county level | Yes - businesses can implement, and local governments can support | 30% waste reduction by 2030 | self pay | No, but OAQDA provides funding for industrial
energy efficiency projects | process engineer; material scientist;
industrial ecologist; environmental
compliance | | 5 C2-2 | 5. Industrial Energy | Process & Material
Efficiency | Use lower GWP gases for anesthetics | Use lower GWP gases for anesthetics | switching to sevoflurane or IV anesthetics when possible | Reduce overall industrial emissions by 0.2% | Reduce overall industrial emissions by 0.2% | \$ | minimal capital cost | air quality | air quality | All | | 2025-2030 | specific industry; industry standards
board; ohio manufacturing
association; incentive system at the | Yes - businesses can implement,
and local governments can support | standard practice of IV first and
lower GWP if needed established
immediately | self pay | No | clinical pharmacist;
anesthesiologist; sustainability
officer; health systems administrator | | 5 C2-3 | 5. Industrial Energy | Process & Material
Efficiency | Install leak detection equipment | Install leak detection equipment | # of facilities with detection equipment installed | Lask detection equipment itself would have a small increase in electric load, but earlier detection of leaks would lead to faster response to teaks, saving energy and capturing gases once leaks were fixed. | Leak detection equipment itself would have a small increase in electric load, but earlier detection of leaks would lead to faster response to leaks, saving energy and capturing gases once leaks were fixed. | \$ | \$2,000 - \$20,000 per detector | reduction of waste gas, water, and energy | improved grid quality due to
reduction of demand from
industrial
facilities | All | No-Regret | 2025-2030 | specific industry; industry standards | Yes - businesses can implement, and local governments can support | | Ohio Department of Development State Energy
Program funded implementation of energy
efficiency projects for manufactures with the
Ohio Energy Efficiency Program (OEEP) –
Implementation funds for energy efficiency
retrofits; bank financing, venture capital investor
for new technologies; partnerships with emergin
industries to set decarbonization technologies | No, but OAQDA provides funding for industrial energy efficiency projects | pipeline technician; utility workers;
instrumentation technician; GIS
analyst; water/wastewater engineer | | 5 C3-1 | 5. Industrial Energy | electrification | Electrification of industrial process heat (boilers, industrial heat pumps, eaf) in synergy with gird development | electrification of industrial process heat (boilers, industrial heat pumps, eat) in synergy with grid development. | 80% of processes converted to electrified alternatives | electrification of all low temperature process heat reduces emissions from natural gas and non-utility fuels by –50% | electrification of all process heat reducess
emissions from natural gas and non-utility
fuels by 100% | sss | ~\$200 per kW | improved air quality; reduced noise pollution and vibration | Many industrial facilities fall within
LIDAC communities, so they would
have the highest benefit of air
quality improvements and noise and
vibration reduction | Ali | Low-Regret | 2040-2050, 2030-2040 | | Yes - businesses can implement, and local governments can support | standard for low temperature
heating that replaces all boilers at
the end of life ~10 years. All low
temperature boilers would be | energy efficiency retrofits; bank financing; ventur
capital investors for new technologies;
partnerships with emerging industries to test
decarbonization technologies | No, but OAQDA provides funding for industrial energy efficiency projects | thermal process engineer; electrical
engineer; HVAC specialist; grid
engieer; industrial electrician | | 5 C3-2 | 5. Industrial Energy | electrification | Replace BF-80F system at Cleveland Works with a green steel alternative | Motten oxide electrolysis for green steel | H2DRI + EAF or MOE by 2050 | Electric furnaces produce 75% less CO2 than basic
oxygen furnaces; 126.0RI replaces all of the emissions
from a data furnace. Ned going to bapen in the red 5 or
produces of the red | 100% green steet production reduces total industrial emissions by 67% | ssss | Grants already awarded for other facilities - likely future opportunity. Costs - 52 Billion based on facilities occurred committed by Cleveland - Ciffs and proposed grants for the Middletowr plant | improved air quality since Clevelan
Cliffs is the single greatest emitter
in the area | d
improved air quality | Legacy City | | 2030-2040 | specific industry; industry standardards
board; ohio manufacturing
association; incentive system at the
city or county level | Yes - technology still under development, steelmakers could implement in the future | alitemative solution chosen by 204
and installed by 2050 | Federal Tax Credits in §48C for Industrial Decarbonization, (vib. Department of Development State Energy Program funder unpersentation of energy efficiency projects for manufacturers with the Otto Energy Efficiency Program (EEE)— insplementation funds for energy efficiency retrofits, bank financing, ventual program (EEE) or new technologies of each explain investors for new technologies of each explain explain explain explain explain program of previous explainment of the | | metallurgical engineer; steel plant
engineer, environmental engineer,
laboratory technician; construction
manager; heavy equipment operator | | 5 C3-3 | 5. Industrial Energy | electrification | Electrify machine drives in synergy with grid decarbonization | electrify machine drives in synergy with grid decarbonization | 100% of machine drives converted -
establishment of switching at end of life | reduces natural gas consumption and total industrial e emissions by 8% | reduces natural gas consumption and total industrial emissions by 8% | SSS | depends on the specific application | improved air quality; reduced noise pollution and vibration | improved air quality; reduced noise pollution and vibration | Ali | | 2030-2040, 2040-2050 | specific industry; industry standards
board; ohio manufacturing
association; incentive system at the
city or county level | Yes - individual | begin an "end-of-life" replacement
standard for low temperature
heating that replaces all machine
drives with electrical alternatives a
end of life | Ohio Department of Development State Energy
Program funded implementation of energy
efficiency projects for manufacturers with the
Ohio Energy Efficiency Program (OEEP) – | No, but GAGDA provides funding for industrial energy efficiency projects | electrical engineer; industrial
controls specialist; grid planner;
energy efficiency consultant | | 5 C4-1 | 5. Industrial Energy | Carbon Capture & Sequestration | Carbon capture at Cleveland Works w/ geologic
sequestration in Geauga, Portage, Summit,
Trumbull, Mahoning, and/or Stark Counties. | Carbon capture at Cleveland Works w/ geologic sequestration in
Geauga, Portage, Summil, Trumbull, Mahoning, and/or Stark
Counties. | ~60-90% carbon capture | 90% of Cleveland-Cliffs Cleveland Works annual stationary combustion CO2 emissions (~3 MMT * 0.9 2.7 MMT) year). 15-20 years of CCS, until cost of other green steel technologies (hydrogen and electrolysis) falls below CCS | | ssss | sent to Fowler center >\$1 billion for capture portion (not including pipeline or storage site) | Cliffs is the single greatest emitter | Cliffs is located near multiple LIDAC
communities. Those communities
d would have the greatest benefit from
improved air quality, reduction of
ash, could come to a community
benefits agreement with the carbon
piceline implementation. | Legacy City, First Ring Suburb,
Outer Ring Suburb | | 2030-2040 | agriculture for pipeline construction;
ohio EPA; incentive system at the
city or county level | install carbon capture at Cleveland
Works, but it would require support
and permitting from State of Ohio | | 45Q Federal tax credit could return / survive; ban financing; venture capital investors for new technologies; partnerships with emerging industries to test decarbonization technologies | k
No | carbon capture engineer;
geoscientist; pipeline engineer;
permitting specialist; technicians | | 5 C4-2 | 5. Industrial Energy | Carbon Capture & Sequestration | In cases where processes cannot electrify or switch
to hydrogen due to production costs or processes,
post combustion carbon capture (relevant to cement
making) | In cases where processes cannot electrify or switch to hydrogen
due to production costs or processes, post combustion carbon
capture (relevant to cement making) | ~60-90% carbon capture | CC is between 60-90% efficient | reduces process emissions due to cement making by 90% | SSS | Cost of capture is ~\$100 / MTCO2 | improved air quality | potential for community benefits
agreements with carbon pipeline
implementation | Legacy City, Established City & Town | | 2025-2030 | specific industry; industry standards
board; ohio manufacturing
association; ohio department of
agriculture for pipeline construction;
ohio EPA; incentive system at the
city or county level | | installed point source capture by
2030 | 45Q Federal Tax credit; bank financing; venture
capital investors for new technologies;
partnerships with emerging industries to test
decarbonization technologies | No | process engineer; chemical
engineer; technician;
instrumentation engineer; safety
engineer | | 5 C4-3 | 5. Industrial Energy | Carbon Capture &
Sequestration | Invest in a regional direct air capture facility to help
decarbonize industries that are challenging to
decarbonize and serve as an additional source of
CO2 for utilization industries. | Invest in a regional direct air capture facility to help decarbonize industries that are challenging to decarbonize and serve as an additional source of CO2 for utilization industries. | capture <500,000 MTCO2 annually | | captures 500,000 MTCO2 annually | ssss | needs to be \$200 per ton CO2 to be
remotely viable. Currently \$600 / to
CO2 | | potential for community benefits
agreements with carbon pipeline
implementation Many industrial facilities fall within | All | | 2040-2050 | specific industry; industry standards
board; chio manufacturing
association; chio department of
agriculture for pipeline construction;
chio EPA; incentive system at the
city or county level
specific industry; industry standards | legislative/regulatory approval | operational by 2050 | 45Q Federal tax credit could return / survive; bard financing; venture capital investors for new technologies; partnerships with emerging industries to test decarbonization technologies | No | mechanical engineer; chemical
engineer; technician; energy
systems analyst; geological storage
engineer | | 5 C6-1 | 5. Industrial Energy | alternative fuels | | in cases where processes cannot electrify - switch to hydrogen
(relevant for steel, cement, and chemical manufacturing - all
others should be able to electrify) | 100% of fuel switched | reduces emissions from natural gas, non-utility fuels,
and process emissions. Likely not to be implemented
in the next 5 years | utility fuels, and process emissions. Reduces total industrial emissions by ~ | ssss | Hydrogen currently costs \$6 / kg to
generate, but there is optimism
about reducing this cost by 2030 |
improved air quality | LIDAC communities, so they would
have the highest benefit of air
quality improvements | Legacy City, Established City &
Town | | 2025-2030, 2030-2040, 2040-2050 | board; ohio manufacturing
association; incentive system at the
city or county level | Yes, but contingent on availability of H2 | by 2030; establishment of fuel
switching and fuel completely
switched by 2040 if that is the roul | bank financing, venture capital investors for new
technologies; partnerships with emerging
industries to test decarbonization technologies | No | hydrogen process engineer; fuell
cell specialist; saftey engineer;
infrastructure engineer; technician | | 6 C1-1 | 6. Transportation | Clean Vehicle and Fuel
Transition (light-duty) | Expand BEV charging infrastructure | Buildout of publicly accessible EV charging infrastructure for light-
duty vehicles that can support 99% electric vehicle adoption by
2050. | # of public Level 2 and DC fast charger
ports/plugs | 4,206 Public Level 2 charging ports and 396 Level 3
Fast Charging ports by 2030 align with a path to 99%
adoption across all sectors and vehicles classes by
2050; this would reduce on-road vehicle emissions by
47% by 2030 compared to the BAU trend (reducion
of 326,590 metric tons annually across Cleveland MSA). | align with 99% elector vehicle adoption
across all sectors and vehicles classes by
2050; this would reduce remissions by
99.0% compared to the BAU trend
(reduction of 5.138.25% metric tons of CO2-
eouivalent annually across Cleveland | \$\$ | \$48.2 million in equipment and installation costs by 2030 and \$358.3 million by 2050 based on EVI-X Electric Vehicle Infrastructur Toolbox. | Air quality
Cost Savings | Improvements in air quality | Ali | | 2025-2030, 2030-2040 | Municipal utilities; investor-owned utilities; PUCO; municipalities | Yes - local governments and municipal utilities have authority to | 13.3% electric vehicle adoption by | NEVI program | Yes - NOACA secured \$15 million Charging and
Financing Infrastructure (CFI) grant for its EV
Charging Program; City of Cleveland secured
\$3.95 million CFI grant | Maintenance technician; service
technician; automation & controls
specialist; safety engineer | | 6 C1-2 | 6. Transportation | Clean Vehicle and Fuel
Transition (light-duty) | BEV/FCEV adoption in government fleets | Adoption of electric vehicles in local government fleets at a rate that is consistent with 99% of the light-duty vehicle stock in the region being electric by 2050; utilitze cooperative purchasing programs available to governments to lower procurement costs. | % of government vehicles, including transit, that are BEVs or FCEVs | sectors and vehicles classes by 2050 would reduce
remissions by 4.7% by 2030 compared to the BAU
trend (reduction of 326,590 metric tons annually across
Claudent MSA). | Reaching 99% adoption across all sectors
and vehicles classes by 2050 would
reduce remissions by 99.0% compared to
the BAU trend (reduction of 5.138.235
metric tons of CO2-equivalent annually
across Cleveland MSA). | \$\$ | Cost savings through collaborative
procurement; cost competitive with
ICEVs under longer useful life sinc
maintenance costs are lower for
BEVs. | Air quality
Cost Savings | Improvements in air quality | Ali | Low-Regret | 2025-2030, 2030-2040, 2040-2050 | Municipal utilities; investor-owned
utilities; municipalities (codes &
standards offices); industrial gas
companies | Yes - local governments control fleet purchasing decisions | 13.3% electric vehicle adoption by
2030; 58.2% by 2040; 99% by 205 | Climate Mayors EV Purchasing Collaborative;
Congestion Mitigation and Air Quality (CMAQ)
program administered by NOACA.
https://www.noaca.org/home/showpublisheddocment/32640/838778119536900000 | Yes - \$8.7 million in Clean School Bus Program
grants to invest in electric buses (City of Euclid)
\$10.6 million in Low- and No-Emission Grant
funds to purchase electric transit buses (GCRT)
Laketran has secured \$4 million in grants for EV
buses | | | 6 C1-3 | 6. Transportation | Clean Vehicle and Fuel
Transition (light-duty) | BEV adoption of light-duty passenger vehicles by households | Adoption of electric vehicles by households at a rate that is consistent with 99% of the light-duty vehicle stock in the region being electric by 2050; utilize a local EV rebate program for passenger vehicles to incentiv | % of registered light-duty vehicles in the MSA that are electric. | remissions by 4.7% by 2030 compared to the BAU
trend (reduction of 326,590 metric tons annually across | Reaching 99% adoption across all sectors
and vehicles classes by 2050 would
reduce remissions by 99.0% compared to
the BAU trend(reduction of 5,138,235
metric tons of CO2-equivalent annually
across Cleveland MSA | ss | \$3,000 per vehicle rebate for BEVs
likely sufficient to induce increased
household adoption; repayment of
debt issuance depends on revenue
stream from operating charging
stations. | Air quality
Cost Savings | Improvements in air quality | Ali | Low-Regret | 2030-2040, 2040-2050 | Individual vehicle owners | Yes - individuals can purchase EVs;
local governments can provide
incentives, but they cannot ban or
disincentivize ICEVs | 13.3% electric vehicle adoption by
2030; 58.2% by 2040; 99% by 205 | Federal EV Tax Credit of up to \$7,500 for new
BEVs and FCEVs, and up to \$4000 for used
0 vehicles. In force in 2025.
https://afdc.energy.gov/laws/409 | No | Maintenance technician; service
technician; automation & controls
specialist; safety engineer | | 6 C1-4 | 6. Transportation | Clean Vehicle and Fuel
Transition (light-duty) | Reducing Fuel Cost Access to Electric Vehicle Infrastructure | Install X new EV charging stations in parking lots of LDAC apartment building parking lots. These buildings have been clearlifed using let LDAC ceases that adapsite lets LDAC desired that adapting the LDAC desired that adapting the LDAC desired that adapting the LDAC desired that are community amenities (grocey stores, secretation centers, schools, etc.,) to increase user access among LIDAC residents. | Number of EV chargers installed;
number of EVs purchased within
LDACs | | | ss | | | | All | | 2025-2030 | City Department of Transportation; Local Utility | Yes - local governments and municipal utilities have authority to implement, properly owners could implement, properly owners could would need approval from PUCO to own EV charging infrastructure | Funding obtained for EV charger
installation and of 2025
PRFP submitted for installation
contractor by mid-2026
Installation contractor hired by enr
of 2026
Work begins at the beginning of
2027
Chargers complete by mid-2027
Chargers complete by mid-2027
Chargers complete by mid-2027
Chargers complete puril-2027
Chargers capen to public by end of
2026
Chargers appen to public by end of
2026 | NEVI program | Ver NOACA secured \$15 million Chapting and Financing lefterstructure (CFI) grant for all EV Charging Program. Oily of Cleveland secured \$3.95 million CFI grant. | Maintenance technician; service | | 6 C1-5 | 6. Transportation | Clean Vehicle and Fuel
Transition (medium &
heavy-duty) | Expand BEV charging infrastructure | Buildout of publicly accessible higher-powered EV charging
infrastructure for medium and heavy-duty vehicles that can suppor
99% electric vehicle adoption by 2050. | # of publicly accessible higher-powerer
et (350-1500 kW) on route public chargen
charging within the Cleveland MSA. | d 833 higher-powered on route public chargers align with 99% electric vehicle adoption by 2050. | 833 higher-powered on route public chargers align with 96% electric vehicle adoption by 2005. Falling share of BEVs relative to FCEVs for medium and heavy-duty applications from 2030 to 2050. The number of 833 on route chargers are how many needed by 2050. | ss | \$256.6 million in equipment and installation costs by 2050 based or EVI-X toolbox and International Council on Clean Transportation | Air quality
Cost Savings | Improvements in air quality | All | | 2025-2030, 2030-2040 | Municipal utilities; investor-owned utilities; PUCO; municipalities | Yes - local governments and municipal utilities have authority to implement; DOB would need approval from PUCO to own EV charging infrastructure | 8.0% electric vehicle adoption by
2030; 50.7% by 2040; 99% by 205 | program administered by NOACA.
https://www.noaca.org/home/showpublisheddoc | Yes - NOACA secured \$15 million Charging and
Financing Infrastructure (CFI) grant for its EV
Charging Program; City of Clevelland secured
\$3.95 million CFI grant | Maintenance technician; service
technician; automation & controls
specialist; safety engineer | | 6 C1-6 | 6. Transportation | Clean Vehicle and Fuel
Transition (medium &
heavy-duty) | Expand FCEV fueling infrastructure | Buildout of hydrogen refueling stations for battery-dominant medium and heavy-duty FCEVs. | # of public hydrogen refueling stations capable of serving medium- and heavy duty FCEVs. | | | sss | \$387.8 million in equipment and
installation costs by 2050 based or
Argonne's Hydrogen Delivery
ScenarioAnalysis Model (HDSAM) | Cost Savings | Improvements in air quality | All | | 2030-2040, 2040-2050 | Municipalities (codes & standards offices); industrial gas companies | Yes - Individual property owners could implement, including through support of local governments; IOUs would require approval from PUCO before making investments | 8.0% electric vehicle adoption by
2030; 50.7% by 2040; 99% by 205 | ment/32840/838778119538900000 Congestion Miligation and Air Quality (CMAQ) program administered by NOACA.
https://www.noaca.org/home/showpublisheddocment/32840/638778119538900000 | u No | Maintenance technician; service
technician; automation & controls
specialist; safety engineer | | | | Clean Vehicle and Fuel | | Adoption of electric vehicles in local government fleets at a rate that is consistent with 99% of the medium- and heavy-duty vehicle | | Being on track to reach 99% adoption across all | Reaching 99% adoption across all sectors
and vehicles classes by 2050 would | | | | | | | | Municipal utilities; investor-owned | | | Climate Mayors EV Purchasing Collaborative;
Congestion Mitigation and Air Quality (CMAQ) | Yes - \$8.7 million in Clean School Bus Program
grants to invest in electric buses (City of Euclid);
\$10.6 million in Low- and No-Emission Grant | Maintanana tashaisian sanisa | |--------|-----------------------------------|---|---|--|--|--|---|----------|--|--|--|--|------------|---------------------------------|---|--|--|--|---|---| | 6 C1-7 | 6. Transportation | Transition (medium & heavy-duty) | BEV/FCEV adoption in government fleets | stock in the region being electric by 2050; utilitze cooperative
purchasing programs available to governments to lower | % of government vehicles, including
transit, that are BEVs or FCEVs | sectors and vehicles classes by 2050 would reduce
remissions by 4.7% by 2030 compared to the BAU
trend (reduction of 326,590 metric tons annually acros
Cleveland MSA). | reduce remissions by 99.0% compared to
the BAU trend(reduction of 5,138,235 | \$\$\$\$ | | | Improvements in air quality | Legacy City, Established City &
Town | Low-Regret | 2025-2030, 2030-2040, 2040-2050 | utilities; municipalities (codes & standards offices); industrial gas | Yes - local governments control fle-
purchasing decisions | et 8.0% electric vehicle adoption by 2030; 50.7% by 2040; 99% by 2050 | program administered by NOACA. | funds to purchase electric transit buses (GCRTA);
Laketran has secured \$4 million in grants for EV | technician; automation & controls | | | | | | procurement costs. | | Cleveland MSA). | metric tons of CO2-equivalent annually across Cleveland MSA). | | | | | | | | companies | | | ment/32640/638778119536900000 | buses | | | 6 C1-8 | 6. Transportation | Clean Vehicle and Fuel
Transition (maritime) | Advance the use of sustainable liquid and gaseou
fuels at regional maritime ports | s Advance the use of sustainable liquid and gaseous fuels at
regional maritime ports | % of fuel used at port that is low-carbon
(by energy content or volume) | unlikely to get going by 2030 | 100% reduction in maritime vehicle emissions | ssss | | air quality | air quality | Legacy City, First Ring Suburb,
Established City & Town | Low-Regret | 2030-2040, 2040-2050 | Port authorities | Yes - Port Authorities can
implement, provided there is | 100% adoption of sustainable fuels
by 2050. | Clean Ports Programx | Yes - Port of Cleveland secured \$94.2 million
Clean Ports Program grant | technician; automation & controls | | | | Clean Vehicle and Fuel | Advance the use of sustainable aviation fuel at | | | | Citizatoria | | | | | Established Only & Town | | | Municipalities or counties with | yes - airports can provide
infrastructure and incentives for use | | CMAQ | | specialist: safety engineer Maintenance technician; service | | 6 C1-9 | 6. Transportation | Transition (aviation) | regional airports | Advance the use of sustainable aviation fuel at regional airports | % of total jet fuel volume replaced with
SAF annually | unlikely to get going y 2030 | 100% reduction in aviation emissions | \$222 | | air quality | air quality | All | | 2030-2040, 2040-2050, 2025-2030 | airport oversight. | of SAF, but airlines will have to | | Section 45Z SAF tax credit | No | technician; automation & controls
specialist; safety engineer | | | | | | | | | | | | Air quality | | | | | | make purchases Not Currently - local governments and NOACA can conduct planning | | Federal-State Partnership for Intercity Passenger
Rail (FSP) Grant Program provides funding for | | | | 6 C2-1 | 6. Transportation | VMT Reduction | Intercity Passenger Rail and Coordinated
Transportation Planning | Aligned with the Study Network in ODOT's 2025 Strategic
Transportation Analysis, which carries 40% of the state network's | s Travel time to intercity rail station | unlikely to get going by 2030 | lack sufficient data to calculate | \$ | transportation infrastructure CBA | Cost savings
Safety (fewer accidents compared | Time burden for LIDACs | All | No-Regret | 2030-2040 | ODOT, Amtrak, Federal Railroad
Administration | and encouage implementation, but
rail expansion will require support | In flux | capital projects that expand or establish new
intercity passenger rail service. | No | Transportation planners, engineers, public officials | | | | | Transportation Flaming | total VMT and 80% of statewide truck VMT | | | | | | to driving car | | | | | Administration | and approval from State of Ohio,
Federal Railroad Administration, | | IUA provides significant funding for rail projects,
though "most funding in this bill must be allocated | | public officials | | | | | | | | If 1 mile of protected bike lane generates 40 new daily | , | | | Active transportation confers health | | | | | | etc. | | by the end of 2026. ODOT Transportation Alternatives Set-Aside / | Von annual communities have accurat state | | | 6 C2-2 | 6. Transportation | VMT Reduction | | et Protected bicycle infrastructure expands the range of people | Estimate 10 miles per year of protected | bike trips and 25% replace car trips, averaging 3 miles
each:
Daily VMT reduction: 10 trips × 3 miles = 30 VMT | CO2 reduction: 27,375 × 0.404 kg x 10 | SS | transportation infrastructure CBA | benefits Mobility options for people below | Safer options for people in LIDAC | Legacy City, First Ring Suburb, | Low-Regret | 2025-2030 | Cities, counties, ODOT, NOACA | Yes - local governments can
implement, may require | 10 miles per year | Highway Safety Improvement Program (HSIP)
grants; also CMAQ program under NOACA.
Active Transportation Infrastructure Investment | and federal funding and/or are expending local | Transportation planners, engineers, | | 0 02-2 | 6. Harisportation | VMT Reduction | trails, and lane conversions | willing to shift from cars to bicycles for at least some of their trips | bike lanes, trails, and lane conversions | Annual: 30 × 365 = 10,950 VMT
CO2 reduction: 27,375 × 0.404 kg x 10 miles/year = | miles/year x 25 years = 1.106 million kg
CO2 | 33 | напъропанон піназнисніе СБА | the driving age and for those withou | communities who don't own cars | Established City & Town | Low-Negret | 2020/2030 | Cities, coulities, ODOT, NOACA | coordination with ODOT and NOACA | To filles per year | Program (ATIP) focuses on building networks of
connected bicycle and pedestrian infrastructure | Transportation Alterantives (TA), and and Safe | public officials | | | | | | | | 44.240 kg CO2/vear | Depends on the size and number of TODs | | | | | | | | | | | improvements | | | | | | | | | Mode shift rates (increased transit | | that can be implemented and occupied. Assuming average vehicle emissions of | | | Benefits: improved air quality, | | | | | | | | | | | | | | | | | ridership, walking, cycling usage -
GCRTA tracks ridership at each stop | | 0.44 metric tons CO ₂ per 1,000 VMT and
15-25% higher transit usage for TOD | | | reduced infrastructure needs,
building energy efficiency in denser | | | | | | | | | | | | | | | | | and station in the system; NOACA | VMT reduction: estimated 20-40% reductions for TOD residents | residents over regional average;
and 13,500 VMT per resident per year and | | Cost of transit-oriented developme | | Benefit: Increased transit access for | | | | | Yes - local governments control
zoning codes, which they can use to | Already underway in Cleveland and | FTA Pilot Program for Transit-Oriented
Development Planning funds the integration of
land use and transportation planning, economic
development, accessibility, and
multimodal
connectivity, and mixed-use development in new
capital projects. | | | | 6 C2-3 | 6. Transportation | VMT Reduction | Increase density and mix of uses around transit
stations and BRT stops | Vehicle miles traveled (VMT) reduction per household in Transit
Oriented Development (TOD) vs. conventional development | periodically at key intersections and
corridors) | residents Each transit trip typically replaces 8-12 miles of driving Building efficiency gains of 15-30% in dense, mixed- use areas (due to shared walls, smaller unit sizes, | then 500 TOD households (approx. # of
households in catchment area for W. 25th | SS | varies widely depending on size of
housing units, materials and | Disbenefits: gentrification risks;
dramatic increases in density can | households without cars
Disbenefit risk: potential | All | No-Regret | 2025-2030, 2030-2040, 2040-2050 | GCRTA; municipal and county
governments/zoning authorities | promote TOD; local transit
authorities have ability to implemen | ring suburbs) - Cuyahoga County | land use and transportation planning, economic development, accessibility, and multimodal | has been secured, including OAQDA tax | Architects, planners, engineers,
developers, builders | | | | | | | vs. single-use areas | use areas (due to shared walls, smaller unit sizes,
district energy systems) | Street TOD) would result in: | | market | be disruptive and destabilizing for | displacement | | | | | BRT and promote TOD, depending
on availability of funding | implementation across the county | connectivity, and mixed-use development in new
capital projects. | illiancing for in the project in dieverand | | | | | | | | Reduced energy consumption per unit
for denser housing types | | 20-30% VMT reduction (approx. 2,400-
3,600 miles) per year per household x 500
households = 1.2-1.8 million miles per year | | | existing residents; increased traffic
congeston if residents of denser
neighborhoods choose to drive | | | | | | | | | | | | | | | | | Reduced infrastructure needs per capita | | VMT reduction
CO ₂ reduction of 530-790 metric tons per | | | rather than walk, bike, or take transi | t | | | | | | | | | | | | | | | | | | vear | | | | | | | | | | | If landfill gas used for electricity generation, | | environmental engineer; mechanical | | 7.01.1 | 7. Waste & Material | solid waste | install gas capture systems for landfill methane | install gas capture systems for landfill gas | ~35-90% gas capture at landfills | 35% solid waste gas captured | 90% solid waste gas captured | ss | \$1 M - \$10M depending on landfill | potential development of renewable | maybe a community benefit | All | Low-Regret | 2025-2030 | municipal landfills | Yes - landfill operators can install | all landfills have gas capture by | renewable electricity production tax credit (PTC) is a per kilowatt-hour (kWh) federal tax credit included under Section 45; landfill gas-electricity | No | engineer; landfill operations
manager; gas technician; | | 7 (1-1 | Management | soliu wasie | ilistali gas capture systems toi tanulii memane | instali gas captule systems for fairuili gas | -30-90 in gas capture at landins | 35% solid wasie gas captured | 50 % solid waste gas capitaled | ** | size; payback in ~10 years | natural gas | agreement for RNG pipeline? | All | Low-Negret | 2020/2030 | municipal landins | res - ialiulii operators cari iristati | 2030 | equipment eligible for 10 years after entering
service. https://www.epa.gov/mop/renewable- | NO . | instrumentation technician;
construction crew; heavy equipment | | | | | | | | | Assuming 300000 short tons (15% of | | | | if there are LIDAC communities | | | | | | | electricity-production-tax-credit-information | | program coordinater; waste | | 7 C1-2 | 7. Waste & Material
Management | solid waste | Restaurant and grocery food waste
reduction/composting program | Restaurant and grocery food waste reduction/composting program | m 15% of landfill waste is from food waste
goal should be 0% food waste | Assuming 100000 short tons food waste avoided per year, 105085 MT CO2e avoided by 2030 | current solid waste) food waste avoided
per year starting in 2030 and beyond, | ss | Initial implementation ~\$200k and
\$100,000 annual operational costs | reduction of waste | near landfills, there would be a
reduction of pests due to the | All | Low-Regret | 2025-2030 | local government | Yes - individual businesses can
compost, and local governments | municipal composting programs
established by 2030 | USDA composting and food waste reduction
cooperative; closed loop partners composting
consortium | City of Cleveland Secured \$340,961 USDA composting grant | reduction specialist; compost
haulers; sustainability consultant; | | | | + | Add compost bins to public facilities, parks, and | | | | 2214801 MT CO2e avoided by 2050 Assuming 300000 short tons (15% of | | | | if there are LIDAC communities | | | | | Ver helid | | UPDA composito 47 - 4 | | facility operator program coordinater; waste | | 7 C1-3 | 7. Waste & Material
Management | solid waste | Add compost bins to public facilities, parks, and
sports stadiums to divert organic waste from land | Add compost bins to public facilities, parks, and sports stadiums to divert organic waste from land fills | 15% of landfill waste is from food waste
goal should be 0% food waste | Assuming 100000 short tons food waste avoided per year, 105085 MT CO2e avoided by 2030 | current solid waste) food waste avoided
per year starting in 2030 and beyond, | ss | \$1k per bin; program costs ~\$100k | reduction of waste | near landfills, there would be a reduction of pests due to the reduction of organic waste; access | All | Low-Regret | 2025-2030 | local government | Yes - individual businesses can
compost, and local governments
and parks districts can support | municipal composting programs
established by 2031 | USDA composting and food waste reduction
cooperative; closed loop partners composting | City of Cleveland Secured \$340,961 USDA composting grant | reduction specialist; compost
haulers; sustainability consultant; | | | | 1 | | + | - | | 2214801 MT CO2e avoided by 2050 | | 1 | - | reduction of organic waste; access
to composting programs
if there are LIDAC communities | | | - | - | and parks districts can support | | consortium | | facility operator | | 7 C1-4 | 7. Waste & Material | solid waste | | Support composting and food waste reduction with organic waste | | | Assuming 300000 short tons (15% of current solid waste) food waste avoided | SSS | central compost facility ~\$2 M; | reduction of waste | near landfills, there would be a
reduction of pests due to the | All | Low-Regret | 2025-2030 | local government; municipal landfil | Yes - individuals can compost, and
local governments and parks | municipal composting programs | USDA composting and food waste reduction cooperative; closed loop partners composting | City of Cleveland Secured \$340,961 USDA | program coordinater; waste
reduction specialist; compost | | | Management | | organic waste diversion from landfills | diversion from landfills | goal should be 0% food waste | year, 105085 MT CO2e avoided by 2030 | per year starting in 2030 and beyond,
2214801 MT CO2e avoided by 2050 | *** | haulers ~\$500k | | reduction of organic waste; access
to composting programs | | | | | districts can support | established by 2032 | consortium | composting grant | haulers; sustainability consultant;
facility operator | | | 7. Waste & Material | | | er post incineration scrubbers installed at wastewater treatment | | | 88% reduction of water and wastewater | | ar 11 april - | improved air quality and other | improved air quality and other | | | 0005 0000 | wastewater treatment facilities; | Yes - wastewater treatment utilities | scrubbers installed and current | | | environmental engineer, wastewater
process engineer, construction | | / C2-1 | Management | Waste & Wastewater | treatment facilities with fluidized bed incinerators | | capture 88% CO2 | 88% reduction of water and wastewater emissions | emissions | \$ | \$5 M - \$25M per facility | harmful emissions | harmful emissions | All | Low-Regret | 2025-2030 | local government | can install, and local governments
can support | combustion switched to fluidized
bed incinerators by 2040 | Great Lakes Environmental infrastructure loan | INO | crew; maintenance technician; air
quality compliance officer;
laboratory technician | | | 7 W | | Invest in high-tech equipment to help detect water | Invest in high-tech equipment to help detect water leaks in | 4000/ -65 | | | | | | | | | | | Yes - water/wastewater treatment | | 0 | | water systems engineer;
instrumentation technician; utility | | 7 C2-2 | 7. Waste & Material
Management | waste & wastewater | leaks in municipal water infrastructure - saving
water and energy once repaired | municipal water infrastructure - saving water and energy once
repaired | 100% of facilities with detection
equipment installed by 2050 | saves energy consumed at wwtf for pumping water | saves energy consumed at wwtf for
pumping water | ss | \$500 - \$2000 per sensor | water and energy savings | potential water infrastructure quality
improvement and decreased cost | All | Low-Regret | 2025-2030, 2030-2040 | wastewater treatment facilities;
local government | utilities can install, and local
governments can support | all water monitored by 2030 | Great Lakes Environmental infrastructure loan;
H2Ohio program | No | worker; pipefitter; GIS technician;
smart infrastructure specailiat; | | | | | 97 1 | <u>'</u> | | | | | | can be expensive and can have | | | | | | , ,, | | | | project manager | | | | | | | | | | | | other issues that need to be
handled in engineering design (e.g., | | | | | | Yes - businesses can explore. | |
EPA HFC Reclaim and Innovative Destruction | | | | 7 C3-1 | 7. Waste & Material
Management | HFCs (Refrigerants) | Use climate friendly refrigerants | use climate friendly refrigerants | 100% of refrigerants switched by 2050 | alternatives have <20x lower GWP, leading to a
reduction in refrigerant emissions of 80% | alternatives have <20x lower GWP, leading
to a reduction in refrigerant emissions of | ss | New units cost 10% more than
traditional; retrofits are ~10k per
commercial unit | ammonia is corrosive and may be
toxic when inhaled; propane is | these refrigerants may be more
espensive (disbenefit) | All | Low-Regret | 2030-2040 | Ohio EPA | property owners can implement,
and local governments can | established standards for climate
friendly refrigerants by 2030 | Grants | No | hvac technician; building manager;
energy consultant | | | 1 | | | | | | 80% | | commercial unit | extremely flammable, but these
have been addressed at large scale
in industries such as the | | | | | | encourage | | | | | | | | | | | 87% decrease in vented refrigerants | | | | | commercial food storage industry | | | | | | Yes - Solid Waste Management | | EPA HFC Reclaim and Innovative Destruction | | refrigerant recovery technician: | | 7 C3-2 | 7. Waste & Material
Management | HFCs (Refrigerants) | End of equipment life facilities, dropoff/collection
programs to ensure proper containment of | end of equipment life facilities, dropoff/collection programs to
ensure proper containment of refrigerants | from proper end of life handling.
Updating local policies to require proper | 90% of hfc emissions come from end-of-life leaking, s
proper handling could reduce up to 90% hfc emissions | 90% of hfc emissions come from end-of-
life leaking, so proper handling could | \$ | initial setup \$25,000 - 100,000;
collection programs ~\$100k per | air quality; safe handling of
materials | air quality; safe handling of
materials | Outer Ring Suburb, Rural
Community | Low-Regret | 2025-2030 | Local governments; waste
management companies | Districts can implement, with
support of private companies and | program for end of equipment life
refrigerants established by 2030 | Grants | No | public works staff; environmental
compliance officer; drop-off site | | | | | refrigerants | | handing of equipment at end of life | | | | year | The benefits are carbon | | | | | | local governments | Programs already in place. | | | operator | | 8 C1-1 | 8. AFOLU | Natural Ecosystem | Support habital restoration and conservation to increase carbon sequestration, prevent land | Support habitat restoration and conservation to increase carbon
sequestration, prevent land degradation, and promote healthy | Acres of land put into conservation or | Assume that the net change in land use sequesters 1 ton of CO ₂ ac ⁻¹ yr ⁻¹ . 5000 acres per year added mean 25 000 tons of CO2e/yr by 2030 | Assume that the net change in land use sequesters 1 ton of CO ₂ ac ⁻¹ yr ⁻¹ . 5000 | ss | Minimal cost. Land rental rates hel | | Minimal benefits | Rural Community | Low-Regret | 2030-2040 | Ohio Dept of Agriculture. Ohio DNF | Yes - property owners, local governments, parks districts, and | Expanded marketing of the
programs and growing incentives by | Cleveland Tree Coalition for tree plantings, | Yes - \$129 million CPRG implementation grant includes funds for restoration of former Diamond | Environmental Scientists | | | | Restoration | degradation, and promote healthy lands | lands | restored | 25,000 tons of CO2e/yr by 2030. | acres per year added means 100,000 tons of CO2e/yr by 2050. | | determine easement rates | providing ecological habitat.
Disbenefit is taking land out of | | , | | | | others can implement | 2030 would help grow these
programs significantly by 2050. | H2Ohio for wetland restoration | Shamrock chemical plant in Painesville | | | | | | | | | | | | | Dotential development. The benefits are carbon sequestration, flood water storage, | | | | | | | | | Yes - multiple communities and organizations | | | 8 C1-2 | 8. AFOLU | Natural Ecosystem | Expand Wetland Restoration | Wetland restoration sequesters carbon and provides multiple oth
flood-reduction and water quality improvement co-benefits | The change in % wetland cover across
the region using annual NLCD land | Goal of 500 acres restored would result in 2000 t | Goal of 2500 acres would result in 10,000 t | \$ | \$15-30k per acre for restoration if
the land is already owned | excess nutrient attenuation,
providing ecological habitat, and | Less flooding, more recreational | Rural Community | | 2030-2040, 2025-2030, 2040-2050 | Ohio Dept of Agriculture, Ohio DNF | Yes - property owners, local governments, parks districts, and | Grow incentives by 2030 to
encourage more restoration before | Great Lakes Restoration Initiative (GLRI)
EPA Wetland Program Development Grants
(WPDG) | have received GLRI funds for wetland restoration, including Chagrin River Watershed Partners, | Wetland scientists, hydrologists, civil engineers | | | | Residation | Programs | nood-reduction and water quality improvement co-benefits | cover data | COZIVI | CO ₂ yi | | tile tallo is alleady owned | recreation opportunities. The
disbenefit is providing biting insect | aleas | | | | County 301 Water Districts | others can implement | 2050. | (WPDG) | Cleveland Metroparks, Cleveland Museum of
Natural History, and WRLC | Livil engineers | | | | | Reforest agriculture lands no longer in use, | Reforesting marginal ag land is a good net change in | Compare 2025 agriculture land use | Sequesters 1 to 3 tons of CO ₂ ac ⁻¹ yr ⁻¹ . Convert 1% of | Sequesters 1 to 3 tons of CO ₂ ac ⁻¹ yr ⁻¹ . | | Let natural regeneration handle the | habitat. | Land would be remote from | Established City & Town, First Ring | | | Farmers and Farm Owners; Ohio | Yes - property owners, local | Convert 10% of agricultural land to | Ohio's Ag-Link Program allows farm owners to | | | | 8 C2-1 | 8. AFOLU | Agricultural Practices | increasing the regional tree canopy | decarbonization | cover with future forest land use cover | the region by 2030 would result in 13,000 to 39,000 tons CO ₂ vr ⁻¹ | result in 39,000 to 117,000 tons CO ₊ vr ⁻¹ | ss | reforestation, so little cost | Decarbonization | population centers, so little benefit
to LIDAC communities | Suburb | Low-Regret | 2025-2030, 2030-2040, 2040-2050 | Dept of Agriculture, Ohio DNR,
Local governments | governments, parks districts, and others can implement | Convert 10% of agricultural land to forest by 2050. | IOMID. | | Farmers, Foresters | Department of Agriculture) | Yes - City of Cleveland secured \$3.4 million
USDA community forestry grant; the City of Euclid | d | | | | Creation & Destrution Land | | Any net improvement in the number of street trees and regional | 100 street trees, Change in % forest | 1 metric ton CO2e / year / 100 trees. Target 28,000 | | | \$20k (total cost over 2 years) | shading/cooling and canopy | Less energy needed for cooling, | | | | Cle Tree Contition Cle Mater Basis | Yes - property owners, local | Cleveland's canopy to 30% by 2040. | Ohio Department of Natural Resources (ODNR) forestry grants | Community Forestry Grant; the City of Lyndhurst
received a \$100,000 USDA Urban and | | | 8 C3-1 | 8. AFOLU | Creating & Protecting Land
Sinks | Tree carbon-capture | forest cover will sequester carbon and provide numerous co-
benefits | canopy using national Tree Canopy
Cover data | trees for the region per year over five years results in
1400 metric tons of CO2e of sequestration | 5600 metric tons of CO2e sequestered by 2050. | \$ | NBS Cost-benefit | interception of rainfall | less storm water in yard, but more
tree maintenance cost | All | No-Regret | 2025-2030, 2030-2040, 2040-2050 | Local governments | Yes - property owners, local
governments, parks districts, and
others can implement | regional canopy to 40% by 2050 | Cleveland Tree Coalition grants | Community Forestry Grant; various communities
have received forestry grants from USDA, CTC, | Foresters | Healthy Urban Tree Canopy Grant Program | HUTCP, and ODNR | Foundations/Philanthropy Urban and Community Forestry Program (US | Yes - City of Cleveland secured \$3.4 million
USDA community forestry grant; the City of Euclid | d | | | | 0 | D. d d | | - | | | | | | Less energy needed for cooling, | | | | | Yes - property owners, local | 5.4.4.7.4 | Ohio Department of Natural Resources (ODNR)
forestry grants | received a \$525,000 USDA Urban and
Community Forestry Grant; the City of Lyndhurst | | | 8 C3-2 | 8. AFOLU | Creating & Protecting Land
Sinks | Reduce tree loss
Model mature tree protection ordinance | Reducing the loss of forest results in a net improvement in
emissions. | Tree canopy cover using the natinoal
Tree Canopy Cover data | Preventing a 1% loss of forest aross the NOACA region results in 13,000-39,000 metric tons of CO2e per year | Goal of no net forest loss by 2050 | s | No cost | shading/cooling | less storm water in yard, but more
tree maintenance cost | Rural Community | Low-Regret | 2025-2030, 2030-2040, 2040-2050 | Local governments | governments, parks districts, and others can implement | Establish policies by 2030 to protect mature trees | | received a \$100,000 USDA Urban and
Community Forestry Grant; various communities
have received forestry grants from USDA, CTC, | Foresters | Healthy Urban Tree Canopy Grant Program | HUTCP, and ODNR | | | | | 1 | | | | | Net reduction of 0.5 tons of CO ₂ ac ⁻¹ vr ⁻¹ | | 1 | | | | | - | | - | | Foundations/Philanthropy | | | | | | | Expand agriculture practices to restore soil health |
Moving to low- and no-till agriculture and using cover cropping ca | Track the number of acres practicing | Net reduction of 0.5 tons of CO ₂ ac ⁻¹ yr ⁻¹ when going from conventional to conservation ag practices. 500 | when going from conventional to | | | | Enhance agricultural community | | | | | Yes - farm owners can implement, | Make a concerted push to grow | | | | | 8 C3-3 | 8. AFOLU | Agricultural Practices | and increase carbon sequestration in rural parts of
the region, through peer-to-peer learning exchange | moving to low- and no-sii agriculture and using cover cropping ca
reduce emissions from ag fields | different conservation agriculture
techniques | acres per year changed to conservation ag from trad a
is a reduction of 250 tons per yr, so 1250 tons of CO2e | year changed to conservation ag from trad
ag is a reduction of 250 tons per yr, so | ss | Minimal cost to implement | Increased local food production | that may help alleviate food desertification | Legacy City | | 2025-2030, 2030-2040, 2040-2050 | Onio Dept of Agriculture | with support from local and state officials and agricultural extensions | these activities by 2030 to attain optimal sequestration by 2050. | USDA Conservation Innovation Grants | No | Farmers | | | | + | | Three-dimensional digital model, created and maintained at the | | -, | 5000 tons of CO2e by 2050. | | + | Visualization of tree canopy | | | | | | Yes - local governments can pursu | | | | | | 8 C3-4 | 8. AFOLU | Creating & Protecting Land
Sinks | Digital twin to track trees planted, removed, or
replaced annually, including old growth trees | municipal, county-wide, or MSA-level to track tree plantings and
removals in real time | changes in # and configuration of urban
trees | No direct reductions - this measure is a tool for
measuring reductions | No direct reductions - this measure is a tool for measuring reductions | \$ | Cost to hire team to build the twin.
Probably in the \$100s of thousand | expansion and depletion may lead
to increased public understanding or
reformation measures | Educational opportunity | Legacy City, Rural Community | Low-Regret | 2025-2030, 2030-2040, 2040-2050 | Municipalities | in partnership with universities,
community organizations | Built by 2030 | NSF Smart and Connected Communities (S&CC) | No | Computer scientists, geographers | | | | Creating & Protection 1 | | | | Assume that the net change in land use sequesters 1 | Assume that the net change in land use | | | Productive use of surplus real | Carbon storage sites might be | | | 1 | 1 | Yes - municipal and county land | Add language about
decarbonization to land bank | | | | | 8 C3-5 | 8. AFOLU | Creating & Protecting Land
Sinks | Land bank set-asides for carbon storage | Identify land in four county land banks that could be conserved to
potential carbon removal and storage | # and acreage of sites identified | Assume that the net change in land use sequesters 1 ton of CO ₂ ac ⁻¹ yr ⁻¹ . Maybe 100 acres per year, so 50 tons of CO2e by 2030. | o sequesters 1 ton of CO ₂ ac ⁻¹ yr ⁻¹ . So
keeping the same rate, 2000 additional
tons of CO2e by 2050. | \$ | Minimal cost to implement | estate; disbenefit of limiting future
redevelopment opportunities | concentrated in LIDAC communities
where market forces do not support
traditional real estate development | All | Low-Regret | 2025-2030 | Municipalities, Counties | Yes - municipal and county land
banks can implement | decarbonization to land bank
ownership transfers by 2030 to
encourage land uses that sequester | Land bank resources | No | Foresters, Urban planners | | | | | | | | | | | | | | | | | | Yes - local governments and parks
districts can implement with suppo | rt | | | | | 8 C3-6 | 8. AFOLU | Creating & Protecting Land | scale community-based native urban gardens, | Support community greenspace programs for small scale
community-based native urban gardens, greenspaces, and tree | Number of acres converted to | negligible | negligible | s | community garden CBA | Community building, aras for
cooling, mental health benefits | Green spaces for cooling off and
better mental health& emotional | all | | 2025-2030 | Municipalities | from others, including community
organizations (e.g. Cleveland Tree | Build educational materials by 2030
that describes how these actions | | Yes - several communities have secured funds
from these programs | Landscape architects, urban | | | | 1 | greenspaces, and tree planting | planting | J | | | | | g, | health | | | | | Gardens, Western Reserve Land | sequester carbon | | pg | [| | | | | | | | | | | | | | | | | | Conservancy) | | | | | | | | 1 | 1 | 1 | 1 | - | + | 1 | | | | | |--|---|------|--|--|--| | | | | | | | | | |
 | | | |